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Chapter IX. Tensors and Multilinear Forms.

IX.1. Basic Definitions and Examples.

1.1. Definition. A bilinear form is a map B : V ×V → C that is linear in each entry

when the other entry is held fixed, so that

B(αx, y) = αB(x, y) = B(x, αy)

B(x1 + x2, y) = B(x1, y) + B(x2, y) for all α ∈ F, xk ∈ V, yk ∈ V

B(x, y1 + y2) = B(x, y1) + B(x, y2)

(This of course forces B(x, y) = 0 if either input is zero.) We say B is symmetric if

B(x, y) = B(y, x), for all x, y and antisymmetric if B(x, y) = −B(y, x).
Similarly a multilinear form (aka a k-linear form , or a tensor of rank k) is a

map B : V ×· · ·×V → F that is linear in each entry when the other entries are held fixed.

We write V (0,k) = V ∗ ⊗ . . . ⊗ V ∗ for the set of k-linear forms. The reason we use V ∗

here rather than V , and the rationale for the “tensor product” notation, will gradually

become clear.

The set V ∗ ⊗ V ∗ of bilinear forms on V becomes a vector space over F if we define

1. Zero element: B(x, y) = 0 for all x, y ∈ V ;

2. Scalar multiple: (αB)(x, y) = αB(x, y), for α ∈ F and x, y ∈ V ;

3. Addition: (B1 + B2)(x, y) = B1(x, y) + B2(x, y), for x, y ∈ V .

When k > 2, the space of k-linear forms V ∗ ⊗ . . . ⊗ V ∗ is also a vector space, using
the same definitions. The space of 1-linear forms (= tensors of rank 1 on V ) is the dual
space V ∗ = HomF(V, F) of all F-linear maps ℓ : V → F. By convention the space of
0-forms is identified with the ground field: V (0,0) = F; its elements are not mappings on
V . It is also possible (and useful) to define multilinear forms of mixed type, mappings
θ : V1 × . . . × Vk → F in which the components Vj are not all the same. These forms
also constitute a vector space. We postpone any discussion of forms of “mixed type.”

If ℓ1, ℓ2 ∈ V ∗ we can create a bilinear form ℓ1 ⊗ ℓ2 by taking a “tensor product” of
these forms

ℓ1 ⊗ ℓ2(v1, v2) = 〈ℓ1, v1〉 · 〈ℓ2, v2〉 for v1, v2 ∈ V

Bilinearity is easily checked. More generally, if ℓ1, · · · , ℓk ∈ V ∗ we obtain a k-linear map
from V × . . . × V → F if we let

ℓ1 ⊗ . . . ⊗ ℓk(v1, · · · , vk) =
k∏

j=1

〈ℓj , vj〉 .

We will show that “monomials” of the form ℓ1⊗ . . . ⊗ ℓk span the space V (0,k) of rank-k
tensors, but they do not by themselves form a vector space except when k = 1.

1.2. Exercise. If A : V → V is any linear operator on a real inner product space verify
that

φ(v1, v2) = (Av1, v2) for v1, v2 ∈ V

is a bilinear form.
Note: This would not be true if F = C. Inner products on a complex vector space are
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conjugate-linear in their second input, with (x, z · y) = z · (x, y) for z ∈ C; for C-linearity
in the second entry we would need (x, z · y) = z · (x, y). However, c = c for real scalars so
an inner product on a real vector space is a linear function of each input when the other
is held fixed. �

1.3. Example. Let A ∈ M(n, F) and V = Fn. Regarding elements of Fn as n × 1
column vectors, define

B(x, y) = xtAy =

n∑

ij=1

xiAijyj

where xt is the 1 × n transpose of the n × 1 column vector x. If we interpret the 1 × 1
product as a scalar in F, then B is a typical bilinear form on V = Fn. �

The analogous construction for multilinear forms is more complicated. For instance,
to describe a rank-3 linear form B(x, y, z) on V ×V ×V we would need a three-dimensional
n×n×n array of coefficients {Bi1,i2,i3 : 1 ≤ ik ≤ n}, from which we recover the original
multilinear form via

B(x, y, z) =

n∑

i1,i2,i3=1

xi1yi2zi3Bi1,i2,i3 for (x, y, z) ∈ F
3 .

The coefficient array is an ntimesn square matrix only for bilinear form (k = 2). For the
time being we will focus on bilinear forms, which are quite important in their own right.

Many examples involve symmetric or antisymmetric bilinear forms, and in any case
we have the following result.

1.4. Lemma. Every bilinear form B is uniquely the sum B = B+ + B− of a symmetric

and antisymmetric form.

Proof: B± are given by

B+(v1, v2) =
B(v1, v2) + B(v2, v1)

2
and B− =

B(v1, v2) − B(v2, v1)

2
.

As for uniqueness, you can’t have B = B′ with B symmetric and B′ antisymmetric
without both being the zero form. �

Variants. If V is a vector space over C, a map B : V × V → C is sesquilinear if it is
a linear function of its first entry when the other is held fixed, but is conjugate-linear in
its second entry, so that

B(x1 + x2, y) = B(x1, y) + B(x2, y) and B(x, y1 + y2) = B(x, y1) + B(x, y2)

B(αx, y) = αB(x, y) and B(x, αy) = B(x, y)α for all α ∈ C .

This is the same as bilinearity when F = R. The map is Hermitian symmetric if

B(y, x) = B(x, y)

On a vector space over R, an inner product is a special type of bilinear form, one that
is strictly positive definite in the sense that

(32) B(x, x) ≥ 0 for all x ∈ V and B(x, x) = ‖x‖2 = 0 ⇒ x = 0

Over C, an inner product is a map B : V × V → C that is sesquilinear, Hermitian
symmetric, and satisfies the nondegeneracy condition (32).
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A bilinear form B ∈ V ∗ ⊗ V ∗ is completely determined by its action on a basis
X = {ei} via the matrix [B]X = [Bij ] with entries

Bij = B(ei, ej) for 1 ≤ i, j ≤ n

This matrix is symmetric/antisymmetric if and only if B has these properties. Given
[B]X we recover B by writing x =

∑
i xiei, y =

∑
j yjej ; then

B(x, y) = B(
∑

i

xiei ,
∑

j

yjej) =
∑

i

xi B(ei,
∑

j

yjej)

=
∑

i,j

xiBijyj = [x]tX[B]X[y]X ,

a 1 × 1 matrix regarded as an element of F. Conversely, given a basis and a matrix
A ∈ M(n, F) the previous equality determines a bilinear form B (symmetric if and only
if B = Bt etc) such that [B]X = A. Thus we have isomorphisms between vector spaces
over F:

1. The space of rank-2 tensors V (0,2) = V ∗ ⊗ V ∗ is ∼= M(n, F) via B → [B]X;

2. The space of symmetric bilinear forms is isomorphic to the space of symmetric
matrices , etc.

We next produce a basis for V ∗ ⊗ V ∗ and determine its dimension.

1.5. Proposition. If X = {ei} is a basis in a finite-dimensional vector space V , and

X∗ = {e∗i } is the dual basis in V ∗ such that 〈e∗i , ej〉 = δij , then the monomials e∗i ⊗ e∗j
given by

e∗i ⊗ e∗j (v1, v2) = 〈e∗i , v1〉 · 〈e∗j , v2〉
are a bases on V ∗ ⊗ V ∗. Hence, dim(V ∗ ⊗ V ∗) = n2.

Proof: The monomials e∗i ⊗ e∗j span V ∗ ⊗ V ∗, for if B is any bilinear form and Bij =

B(ei, ej), then B̃ =
∑

i,j Bije
∗
i ⊗e∗j has the same action on pairs ek, eℓ ∈ V as the original

tensor B.

B̃(ek, el) = (
∑

i,j

Bij · e∗i ⊗ e∗j)〈ek, eℓ〉 =
∑

i,j

Bij〈e∗i , ek〉 · 〈e∗j , eℓ〉

=
∑

i,j

Bijδikδjℓ = Bkℓ = B(ek, eℓ) ,

so B̃ = B ∈ F-span{e∗i ⊗ e∗j}. As for linear independence, if B̃ =
∑

i,j bije
∗
i ⊗ e∗j = 0 in

V (0,2), then B̃(x, y) = 0 for all x, y, so bkℓ = B̃(ek, eℓ) = 0 for 1 ≤ k, ℓ ≤ n. �

A similar discussion shows that the space V (0,r) of rank-k tensors has dimension

dim(V (0,r)) = dim(V ∗ ⊗ . . . ⊗ V ∗) = dim(V )r = nr .

If X = {e1, . . . , en} is a basis for V and {e∗i } is the dual basis in V ∗, the monomials

e∗i1 ⊗ . . . ⊗ e∗ir

1 ≤ i1, . . . , ir ≤ n

are a basis for V (0,r).

1.6. Theorem (Change of Basis) Given B ∈ V ∗⊗V ∗ and a basis X in V , we describe

B by its matrix via (32). If Y = {fj} is another basis, and if

(33) id(fj) = fj =
∑

k

skjek for 1 ≤ j ≤ n ,
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then S = [sij ] = [id]XY is the transition matrix for basis vectors and we have

([B]Y)ij = B(fi, fj) = B(
∑

k,ℓ

skiek ,
∑

ℓ

sℓjeℓ)

=
∑

k,ℓ

SkiBkℓSℓj =
∑

k,ℓ

(St)ikBkℓSℓj

= (St[B]XS)ij

Note: We can also write this as [B]Y = P [B]XP t, taking P = St = [id]tXY. �

Thus change of basis is effected by “congruence” of matrices A 7→ SASt, with det(S) 6= 0.
This differs considerably from the “similarity transforms” A 7→ SAS−1 that describe the
effect of change of basis on the matrix of a linear operator T : V → V . Notethet St is
generally not equal to S−1, so congruence and similarity are not the same thing. The
difference between these concepts will emerge when we seek “normal forms” for various
kinds of bilinear (or sesquilinear) forms.

1.7. Definition. A bilinear form B is nondegenerate if

B(v, V ) = 0 ⇒ v = 0 and B(V, v) = 0 ⇒ v = 0

If B is either symmetric or antisymmetric we only need the one-sided version. The

radical of B is the subspace

rad(B) = {v ∈ V : B(v, v′) = 0 for all v′ ∈ V } ,

which measures the degree of degeneracy of the form B The B-orthocomplement of a

subspace W ⊆ V is defined to be

W⊥,B = {v ∈ V : B(v, W ) = (0)} .

Obviously, W⊥,B is a subspace. When B is symmetric or antisymmetric the conditions
B(v, W ) = 0 and B(W, v) = 0 yield the same subspace B⊥,B. Then nondegeneracy
means that V ⊥,B = {0}, and in general V ⊥,B is equal to the radical of B.

1.8. Exercise (Dimension Formula). If B is nondegenerate and either symmetric or
antisymmetric, and if W ⊆ V is a subspace, prove that

dim(W ) + dim (W⊥,B) = dim(V ) �.

The notion of “nondegeneracy” is a little ambiguous when the bilinear form B is neither
symmetric nor antisymmetric: Is there a difference between “right nondegenerate,” in
which B(V, y) = 0 ⇒ y = 0, and nondegeneracy from the left: B(x, V ) = 0 ⇒ x = 0?
The answer is no. In fact if we view vectors x, y ∈ V as n × 1 columns, we may write
B(x, y) = [x]tX[B]X[y]X, and if [B]X is singular there would be some y 6= 0 such that
[B]X[y]X = 0, hence B(V, y) = 0. That can’t happen if B is right nondegenerate so
B right-nondegenerate implies [B]X is nonsingular. The same argument shows B left-
nondegenerate also implies [B]X nonsingular.

But in fact, this works in both directions, so

1.9. Lemma. B is right nondegenerate if and only if [B]X is non singular.

Proof: We have already proved (⇐) for both left- and right nondegeneracy. Conversely,
if B(V, y) = 0 for some y 6= 0, then [B]X[y]X 6= 0 if det([B]X) 6= 0, and we would have

B(ei, y) = et
i [B]X [y]X 6= 0
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for some i. This conflicts with the fact that [B]X[y]X 6= 0. Contradiction. �

Thus for any basis X, B is right-nondegenerate⇔ [B]X is nonsingular ⇔ left-nondegenerate,
and it is legitimate to drop the “left/right” conditions on nondegeneracy.

Hereafter we will often abbreviate dim(V ) = |V |, which is convenient in this and
other situations.

1.10. Lemma. If B is a nondegenerate bilinear form on a finite dimensional space V ,

and M is a vector subspace, we let M⊥,B = {w : B(V, w) = 0}. Then

|M | + |M⊥,B| = |V | ,

even though we need not have M ∩ M⊥,B = (0).

Proof: If |V | < ∞ any nondegenerate bilinear form B mediates a natural bijection
J : V → V ∗ that identifies each vector v ∈ V with a functional J(v) in V ∗ such that

〈J(v), ℓ〉 = 〈ℓ, v〉 for all v ∈ V, ℓ ∈ V ∗ .

This map is clearly F-linear and J(w) = 0 ⇒ B(V, w) = 0 ⇒ w = 0 by non degeneracy
of B, so J is one-to-one and also a bijection because |V | = |V ∗|.

In Section III.3 of the Linear Algebra I Course Notes, we defined the “annihilator”
of a subspace M ⊆ V to be

M◦ = {ℓ ∈ V ∗ : 〈ℓ, M〉 = 0}

and discussed its properties, indicating that

(M◦)◦ = M and |V | = |M | + |M◦|

when |V | < ∞. The annihilator M◦ is analogous to the orthogonal complement M⊥

in an inner product space, but it lives in the dual space V ∗ instead of V ; it has the
advantage that M◦ makes sense in any vector space V , whether or not it is equipped
with an inner product or a nondegenerate bilinear form. (Also, orthogonal complements
M⊥ depend on the particular inner product on V , while the annihilator M◦ has an
absolute meaning.)

1.11. Exercise. When V is equipped with a nondegenerate bilinear form B we may
invoke the natural isomorphism V ∼= V ∗ it induces to identify an annihilator M◦ in
V ∗ with a uniquely defined subspace J−1(M◦) in V . From the definitions, verify that
M◦ ⊆ V ∗ becomes the B-orthocomplement M⊥,B ⊆ V under these identifications. �

1.12. Exercise. If B is a nondegenerate bilinear form on a finite dimensional vector

space, and if M is any subspace, prove that

(34) |M | + |M⊥,B| = |V | and (M⊥,B)
⊥,B

= M.

Hint: Identifiying B-orthocomplements with annihilators, apply the basic properties of
annihilators mentioned in Exercise 1.12. �

If B is degenerate, so the radical rad(B) is nonzero, the role of the radical can be
eliminated for most practical purposes, allowing us to focus on nondegenerate forms.

1.13. Exercise. Let M = rad(B) and form the quotient space Ṽ = V/M . Show that

1. B induces a well-defined bilinear form B̃ : Ṽ × Ṽ → F if we let

B̃(x + M, y + M) = B(x, y) for all x, y ∈ V
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2. B̃ is symmetric (or antisymmetric) ⇔ B is.

3. Prove that B̃ is now nondegenerate on V/M . �

1.14. Exercise. Given n × n matrices A, B show that

xtBy = xtAy for all x, y ∈ F
n if and only if A = B. �

IX.2. Canonical Models for Bilinear Forms.
Bilinear forms arise often in physics and many areas of mathematics are concerned with
these objects, so it is of some importance to find natural “canonical forms” for B that
reveal its properties. This is analogous to the diagonalization problem for linear opera-
tors, and we will even speak of “diagonalizing” bilinear forms, although these problems
are quite different and have markedly different outcomes.

In doing calculations it is natural to work with the matrices [B]X that represent B
with respect to various bases, and seek bases yielding the simplest possible form. If a
bilinear form B is represented by A = [B]X we must examine the effect of a change
of basis X → Y, and describe the new matrix [B]Y in terms of the transition matrix
S = [id]YX that tells us how to write vectors in the Y-basis in terms of vectors in X, as
in (32). Thus if X = {ei} and Y = {fj}, S = [sij ] is the matrix such that

(35) fj =
∑

k

skjek for 1 ≤ j ≤ n

Obviously det(S) 6= 0 because this system of vector equations must be invertible.
In Theorem 1.6 we worked out the effect of such a basis change: [B]Y = St[B]XS,

which takes the form

(36) [B]Y = P [B]XP t if we set P = St .

We now show that the matrix of a nondegenerate B has a very simple standard form,
at least when B is either symmetric or antisymmetric, the forms of greatest interest in
applications. We might also ask whether these canonical forms are unique. (Answer: not
very.)

The Automorphism Group of a Form B. If a vector space is equipped with a
nondegenerate bilinear form B, a natural (and important) automorphism group Aut(B) ⊆
GLF(V ) comes along with it. It consists of the invertible linear maps T : V → V that
“leave the form invariant,” in the sense that B(T (x), T (y)) = B(x, y) for all vectors. We
have encountered such automorphism groups before, by various names. For example,

1. The real orthogonal group O(n) consists of the invertible linear maps T on Rn

that preserve the usual inner product,

B(x,y) =

n∑

i=1

xiyi for x,y ∈ R
n .

As explained in Section VI.5 of the Linear Algebra I Notes, the automorphisms
that preserve this symmetric bilinear form are precisely the linear rigid motions on
Euclidean space, those that leave invariant lengths of vectors and distances between
them, so that

‖T (x)‖ = ‖x‖ and ‖T (x) − T (y)‖ = ‖x− y‖ for x,y ∈ R
n.

where ‖x‖ = (
∑n

i=1 |xi|2)
1/2

(Pythagoras’ formula).
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2. The unitary group U(n) is the group of invertible linear operators on V = Cn

that preserve the (Hermitian, sesquilinear) standard inner product

B(z,w) =

n∑

k=1

zkwk

on complex n-space. For these operators the following conditions are equivalent
(see Linear Algebra I Notes, Section VI.4).

T ∈ U(n) ⇔ B(T (z) , T (w)) = B(z,w)

⇔ ‖T (z)‖ = ‖z‖
⇔ ‖T (z) − T (w)‖ = ‖z − w‖

for z,w ∈ C
n, where

‖z‖ = B(z, z)1/2 = (
n∑

i=1

|xi|2)
1/2

(Pythagoras’ formula for complex n-space).

2.1. Exercise. Explain why U(n) is a closed and bounded subset in matrix space

M(n, C) ∼= Cn2

�

3. The complex orthogonal group O(n, C) is the automorphism group of the bi-
linear form on complex n-space Cn

B(z,w) =

n∑

k=1

zkwk (z,w ∈ C
n)

This is bilinear over F = C, but is not an inner product because it is not conjugate-
linear in the entry w because wk appears in B instead of wk; furthermore, not all
vectors have B(z, z) ≥ 0 (try z = (1, i) in C2).

In the present section we will systematically examine the canonical forms and associated
automorphism groups for nondegenerate symmetric or antisymmetric forms over F = R

or C. The number of possibilities is surprisingly small.

2.1A. Definition. The automorphism group of a nondegenerate symmetric or anti-

symmetric form B : V × V → F is

(37) Aut(B) = {T ∈ GLF(V ) : B(T (v), T (w)) = B(v, w) for all v, w ∈ V } ,

where GLF(V ) = {T : det(T ) 6= 0} is the general linear group consisting of all

invertible F-linear operators T : V → V .

Aut(B) is a group because it contains: the identity I = idV ; the composition product
S ◦ T of any two elements; and the inverse T−1 of any element.

Given a basis X for V , each element T ∈ Aut(B) corresponds to an invertible matrix
[B]X = [ B(ei, ej)], and these matrices form a group

GB,X = {[T ]X : T ∈ Aut(B)}

under matrix multiplication (·). The group (Aut(B), ◦) and the matrix group (GB,X, · )
are isomorphic and are often identified.

Matrices in GB,X are characterized by their special algebraic properties,

(38) GB,X = {E ∈ GL(n, F) : Et[B]XE = [B]X} ,
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This identification follows because

T ∈ Aut(B) ⇔ B(T (x), T (y)) = B(x, y) for all x, y ∈ V

⇔ [x]tX[B]X[y]X = [T (x)]tX[B]X [T (y)]X

= [x]tX([T ]tX [B]X[T ]X)[y]X

⇔ [B]X = [T ]tX[B]X [T ]X for all x, y ∈ V .

Given basis X, T is an automorphism of the bilinear form B if and only if the matrix
[T ]X satisfies the identity [B]X = [ T ]tX[ B]X[T ]X, and this must be true for any basis X.
Matrices in GB,X are precisely the matrix realizations (with respect to basis X) of all the
automorphisms in Aut(B).

2.2. Exercise. If B is a non degenerate bilinear form, show that GB = Aut(B) is a
subgroup in the general linear group GLF(V ) – i.e. that (i) I ∈ GB , (ii) T1, T2 ∈ GB ⇒
T1, T2 ∈ GB, and (iii) T ∈ GB ⇒ T−1 ∈ GB . �

We can also assess the effect of change of basis X → Y: GB,Y is a conjugate of GB,X

under the action of GL(n, F).

2.3. Exercise. If X, Y are bases in V , define GB,X and GB,Y as in (38) and prove that

GB,Y = S−1GB,XS where S = [id]Y,X

(or equivalently GB,Y = S̃GB,XS̃−1 where S̃ = [id]Y,X since [id]Y,X · [id]X,Y = I). �

Recall that S is the matrix such that fi =
∑n

k=1 sjiej if X = {ei}, Y = {fj}.
The general linear group GLF(V ) in which all these automorphism groups live is de-

fined by the condition det(T ) 6= 0, which makes no reference to a bilinear form. The
special linear group SLF(V ) = {T ∈ GLF(V ) : det(T ) = 1} is another “classical
group” that does not arise as the automorphism group of a bilinear form B. All the
other classical groups of physics and geometry are automorphism groups, or their inter-
sections with SLF(V )

Canonical Forms for Symmetric and Antisymmetric B. We classify the congru-
ence classes of nondegenerate bilinear forms according to whether B is symmetric or
antisymmetric, and whether the ground field is F = R or F = C, always assuming B is
nondegenerate. The analysis is the same for antisymmetric forms over F = R or C, so
there are really only three cases to deal with.

Canonical Forms. Case 1: B symmetric, F = R.
If B is a nondegenerate symmetric bilinear form on a vector space over R with dim(V ) =
n, there are n + 1 possible canonical forms.

2.4. Theorem (B symmetric; F = R). is an R-basis X ⊆ V such that the matrix

describing B has the form

(39) [B]X =

(
Ip×p 0

0 −Iq×q

)
with p + q = n = dim(V ) .

In this case, we say B has signature (p, q).

Proof: First observe that we have a polarization identity for symmetric B that deter-
mines B(v, w) from homogheneous expressions of the form B(u, u), just as with inner
products over R.

(40) Polarization Identity: B(v, w) = 1
2
[B(v + w, v + w) − B(v, v) − B(w, w) ]

for all v, w ∈ V .
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2.5. Definition. The map Q(v) = B(v, v) from V to R is the quadratic form as-

sociated with a symmetric is bilinear form. Note that B(λv, λv) = λ2B(v, v), and the

quadratic form Q : V → R determines the full bilinear form B : V × V → F via the

polarization identity (40).

Therefore, since B ≡/ 0 there is some v1 6= 0, such that B(v1, v1) 6= 0, and after scaling
v1 by some a 6= 0 we can insure that B(v1, v1) = ±1. But because F = R we can’t control
whether the outcome will be +1 or −1.

Let M1 = R·v1 and

M⊥,B
1 = {v ∈ V : B(V, v1) = 0} .

We have M1 ∩ M⊥,B
1 = {0} because any w in the intersection must have the form

w = c1v1, c1 ∈ R. But w ∈ M⊥,B
1 too, so 0 = B(w, w) = c2

1B(v1, v1) = ±c2
1, hence,

c1 = 0 and w = 0. Therefore M1⊕M⊥,B
1 = V because |W |+|W⊥,B| = |V | for any W ⊆ V

(Exercise 1.12). [For an alternative proof: recall the general result about the dimensions
of subspaces W1, W2 in a vector space V : |W1 + W2| = |W1| + |W2| − |W1 ∩ W2|.]

If B1 is the restriction of B to M⊥
1 we claim that B1 : M⊥,B

1 × M⊥,B
1 → R is

nondegenerate on the lower-dimensional subspace M⊥,B
1 . Otherwise, there would be

an x ∈ M⊥,B
1 such that B(x, M⊥,B

1 ) = 0. But since x ∈ M⊥,B
1 too, we also have

B(x, M1) = 0, and therefore by additivity of B in each entry,

B(x, V ) = B(x , M⊥,B
1 + M1) = 0 .

Nondegenerancy of B on V then forces x = 0.
We may therefore continue by induction on dim(V ). Choosing a suitable basis X′ =

{v2, · · · , vn} in M⊥,B
1 and X = {v1, v2, . . . , vn} in V we get

[B]X =




±1 · · · 0

0 Ip×p

0 −Iq×q


 with p + q = n − 1.

If the top left entry is −1, we may switch vectors e1 ↔ ep, which replaces [B]X with
[B]Y = Et[B]XE, where E is the following permutation matrix (the zero on the diagonal
is at the position p)

E =




0 0 · · 1 · · 0
0 +1 0

· . . .

· +1
1 0
· −1

· . . .

0 0 −1




(Note that Et = E for this particular permutation matrix). Then [B]Y has the block-
diagonal form (39), completing the proof. �

Later on, we will describe an algorithmic procedure for putting B into canonical form
diag(+1, · · · , +1,−1, · · · ,−1); these algorithms work the same way over F = R or C.
We will also see that an antisymmetric B cannot be diagonalized by any congruence, but
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they do have a different (and equally useful) canonical form.

The Real Orthogonal Groups O(p,q), p+q = n. The outcome in Theorem 2.4
breaks into n + 1 possibilities. If X is a basis such that [B]X has the standard form (39),
then A ∈ GB,X if and only if

(41) At

(
Ip×p 0

0 −Iq×q

)
A =

(
Ip×p 0

0 −Iq×q

)

This condition can be written concisely as AtJA = J where J =

(
Ip×p 0

0 −Iq×q

)
.

The members of this family of classical matrix groups over R are denoted by O(p, q),
and each one contains as a subgroup the special orthogonal group of signature
(p, q),

SO(p, q) = O(p, q) ∩ SL(n, R) .

Several of the groups O(p, q) and SO(p, q), are of particular interest.

The real Orthogonal Groups O(n, 0) = O(n) and SO(n). With respect to the
standard basis in Rn we have BX = In×n, so J = In×n in (41) and

O(n, 0) = GB,X = {A : AtA = AtIA = I} .

Thus O(n, 0) is the familar group of orthogonal transformations on R
n, traditionally

denoted O(n). This group is a closed and bounded set in matrix space M(n, R) ∼= R
n2

.
�

The Lorentz Group O(n − 1, 1). This is the group of space-time symmetries at the
center of Einstein’s theory of special relativity for n−1 space dimensions x1, . . . , xn−1 and
one time dimension xn which is generally labeled “t” by physicists. For a suitably chosen
basis X in Rn the matrix describing an arbitrary nondegenerate symmetric bilinear form
B of signature (n − 1, 1) becomes

(42) [B]X =




1 0
. . .

1
0 −1


 ,

and the associated quadratic form is

B(x, x) = [x]tX[B]X[x]X = x2
1 + . . . + x2

n−1 − x2
n

Note: The physicists’ version of this is a little different:

B(x, x) = x2
1 + . . . + x2

n−1 − c2t2 ,

where c is the speed of light. But the numerical value of c depends on the physical units
used to describe it – feet per second, etc – and one can always choose the units of (length)
and (time) to make the experimentally measured speed of light have numerical value
c = 1. For instance we could take t = (seconds) and measure lengths in (light seconds) =
the distance a light ray travels in one second; or, we could measure t in (years) and
lengths in (light years). Either way, the numerical value of the speed of light is c = 1.
�

From (41) it is clear that A is in O(n − 1, 1) if and only if

(43) At

(
In−1 0

0 −1

)
A =

(
In−1 0

0 −1

)
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O(n − 1, 1) contains the subgroup SO(n − 1, 1) = O(n − 1, 1) ∩ SL(n, R) of “proper”
Lorentz transformations, those having determinant +1. Within SO(n − 1, 1) we find a

copy S̃O(n − 1) of the standard orthogonal group SO(n − 1) ⊆ M(n − 1, R), embedded
in M(n, R) via the one-to-one homomorphism

A ∈ S̃O(n − 1) ⊆ M(n − 1, R) 7→
(

A 0
0 1

)
∈ SO(n − 1, 1) ⊆ M(n, R) .

The subgroup S̃O(n−1) acts only on the “space coordinates” x1, · · · , xn−1 in Rn, leaving
the time coordinate t = xn fixed.

The following family of matrices in O(n−1, 1) is of particular interest in understanding
the meaning of special relativity.

(44) A =




1/
√

1 − v2 0 0 −v/
√

1 − v2

0 1
. . . 0

...
. . .

...
0 1 0

−v/
√

1 − v2 0 · · · 0 1/
√

1 − v2




When we employ units that make the speed of light c = 1, the parameter v must have
values |v| < 1 to prevent the corner entries in this array from having physically mean-
ingless imaginary values; as v → 1 these entries blow up, so SO(n − 1, 1) is indeed an
unbounded set in matrix space M(n, R).

In special relativity, an event is described by a point (x, t) in space-time Rn−1×R that
specifies the location x and the time t at which the event occurred. Now suppose two
observers are moving through space at constant velocity with respect to one another (no

acceleration as time passes). Each will use his or her own frame of reference in observing
an event to assign space-time coordinates to it. The matrix A in (44) tells us how to
make the (relativistic) transition from the values (x, t) seen by Observer #1 to those
recorded by Observer #2:1 (

x′

t′

)
= A ·

(
x
t

)

2.6. Exercise. Verify that the matrices in (44) all lie in SO(n− 1, 1). Be sure to check
that det(A) = +1.
Note: Show that (41) ⇒ det(A)2 = 1, so det(A) = ±1, and then argue that det(I) = 1
and det(A) is a continuous function of the real-valued parameter −1 < v < +1. �.

2.7. Exercise. Show that

B =




cosh(y) 0 0 sinh(y)
0 1 0 0
0 0 1 0

sinh(y) 0 0 cosh(y)




is in SO(3, 1) for all y ∈ R. �

A Final Remark about (44). If we work with physical units that do not make c = 1,
as assumed in (44), we must replace “

√
1 − v2” everywhere it appears with
√

1 − (
v

c
)
2

1To keep things simple, the transition matrix (44) describes what happens when Observer #2 is
moving with velocity v in the positive x1-direction, as seen by Observer #1, so that x′

1
= x1 − vt, x′

2
=

x2, . . . , x′

n−1
= xn−1. The general formula is more complicated.
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in which the speed of light c appears explicitly �.

Invariance of the Signature for A ∈ O(p, q). One way to compute the signature
would be to find a basis that puts [B]X into the block-diagonal form (39), but how do we
know the signature does not depend on the basis used to compute it? That it does not
is the subject of the next theorem. Proving this amounts to showing that the signature
is a congruence invariant: you cannot transform
(

Ip×p 0

0 −Iq×q

)
to St

(
Ip×p 0

0 −Iq×q

)
S =

(
Ip′×p′ 0

0 −Iq′×q′

)

unless p′ = p and q′ = q. This fact is often referred to as “Sylvesters’s Law of Intertia.”

2.8. Theorem (Sylvester). If A is a nondegenerate real symmetric n×n matrix, then

there is some P ∈ GL(n, R) such that P tAP = diag(1, · · · , 1,−1, · · · ,−1). The number

p of +1 entries and the canonical form (39) are uniquely determined.

Proof: The existence of a diagonalization has already been proved. If B(x,y) =∑
i,j xiAijyj = xtAy is a nondegenerate symmetric bilinear form on R

n, so [B] =
[Aij ] with respect to the standard basis, then there is a basis X such that [B]X =
diag(1, · · · , 1,−1, · · · ,−1). Suppose p = #(entries = +1) for X, and that there is an-
other diagonalizing basis Y such that p′ = #(entries = +1) is 6= p. We may assume
p < p′. Writing X = {v1, · · · , vp, vp+1, · · · , vn} and Y = {w1, · · · , wp′ , wp′+1, · · · , wn},
define L : V → Rp−p′+n via

L(x) = (B(x, v1), · · · , B(x, vp), B(x, wp′+1), · · · , B(x, wn))

The rank rk(L) of this linear operator is at most dim(Rp−p′+n) = p − p′ + n < n, hence
dim(ker(L)) = dim(V ) − rk(L) > 0 and there is some v0 6= 0 in V such that L(v0) = 0.
That means

B(v0, vi) = 0 for 1 ≤ i ≤ p and B(v0, wi) = 0 for p′ + 1 ≤ i ≤ n .

Writing v0 in terms of the two bases we have v0 =
∑n

j=1 ajvj =
∑n

k=1 bkwk.
For i ≤ p we get

0 = B(v0, vi) = B(
∑

j

ajvj , vi) =
∑

j

ajB(vj , vi)

=
∑

j

ajδij = ai = aiB(vi, vi) ,

since [B]X = diag(1, · · · , 1,−1, · · · ,−1). But B(vi, vi) > 0 for i ≤ p while B(v0, vi) = 0,
so we conclude that ai = 0 for 0 ≤ i ≤ p. Similarly, bj = 0 for p′ + 1 ≤ j ≤ n.

It follows that ai 6= 0 for some p′ < i ≤ n, and hence

B(v0, v0) = B(
n∑

j=1

ajvj ,

n∑

ℓ=1

aℓvℓ) =

n∑

j=1

a2
jB(vj , vj)

=

n∑

j=p+1

a2
jB(vj , vj) < 0 .

Furthermore,

B(v0, v0) = B(
n∑

j=1

bjwj ,

n∑

ℓ=1

bℓwℓ) =

n∑

j=1

b2
jB(wj , wj)

=

p′∑

j=1

b2
jB(wj , wj) > 0 .
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Thus B(v0, v0) < 0 and B(v0, v0) ≥ 0, which is a contradiction. �

2.9. Corollary. Two non singular symmetric matrices in M(n, R) are congruent via

A → P tAP for some P ∈ GL(n, R) if and only if they have the same signature (p, q).

Let A be a symmetric n × n matrix with entries from a field F not of characteristic
two. We know that there are matrices Q, D ∈ M(n, F) such that Q is invertible and
QtAQ = D is diagonal. We now give a method for computing suitable Q and diagonal
form D via elementary row and column operations; a short additional step then yields
the signature (p, q) when F = R.

The Diagonalization Algorithm. Recall that the effect of an elementary row opera-
tion on A is obtained by right multiplication A 7→ AE by a suitable “elementary matrix”
E, as explained in Linear Algebra I Notes, Sections I-1 and IV-2. Furthermore, the same
elementary operation on columns is effected by a left multiplication A 7→ EtA using the
same E. If we perform an elementary operation on rows followed by the same elementary
operation on columns, this is effected by

A 7→ EtAE

(The order of the operations can be reversed because matrix multiplication is associative.)
Now suppose that Q is an invertible matrix such that QtAQ = D is diagonal. Any

invertible Q is a product of elementary matrices, say Q = E1E2 · · ·Ek, hence

D = QtAQ = Et
kEt

k−1 · . . . · Et
1AE1E2 · . . . · Ek

Putting these observations together we get

2.10. Lemma. A sequence of paired elementary row and column operations can trans-

form any real symmetric matrix A into a diagonal matrix D. Furthermore, if E1, · · · , Ek

are the appropriate elementary matrices that yield the necessary row operations (indexed

in the order performed), then QtAQ = D if we take Q = E1E2 · · ·Ek.

2.11. Example. Let A be the symmetric matrix in M(3, R)

A =




1 −1 3
−1 2 1
3 1 1




We apply the procedure just described to find an invertible matrix Q such that QtAQ = D
is diagonal.

Discussion: We begin by eliminating all of the nonzero entries in the first row and
first column except for the entry a11. To this end we start by performing the column
operation Col(2) → Col(2) + Col(1); this yields a new matrix to which we apply the
same operation on rows, Row(2) → Row(2) + Row(1). These first steps yield

A =




1 −1 3
−1 2 1
3 1 1


 →




1 0 3
−1 1 1
3 4 1


 →




1 0 3
0 1 4
3 4 1


 = Et

1AE1

where

E1 =




1 1 0
0 1 0
0 0 1


 .
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The second round of moves is: Col(3) → Col(3) − 3 · Col(1) followed by Row(3) →
Row(3) − 3 · Row(1), which yields




1 0 3
0 1 4
3 4 1


 →




1 0 0
0 1 4
3 4 −8


 →




1 0 0
0 1 4
0 4 −8


 = Et

2E
t
1AE1E2

where

E2 =




1 0 −3
0 1 0
0 0 1


 .

Finally we achieve a diagonal form by applying Col(3) → Col(3) − 4 · Col(2) and then
the corresponding operation on rows to get

Et
3E

t
2E

t
1AE1E2E3 =




1 0 0
0 1 0
0 0 −24


 where E3 =




1 0 0
0 1 −4
0 0 1


 .

Since the outcome is a diagonal matrix, the process is complete. To summarize: taking

Q = E1E2E3 =




1 1 −7
0 1 −4
0 0 1


 we get a diagonal form D = QtAQ =




1 0 0
0 1 0
0 0 −24




To obtain the canonical form (39) we need one more pair of operations

Row(3) → 1√
24

· Row(3) and Col(3) → 1√
24

· Col(3) ,

both of which correspond to the (diagonal) elementary matrix

E4 =




1 0 0
0 1 0
0 0 1√

24


 .

The canonical form is

diag(1, 1, 1,−1) = Q̃tAQ̃ where Q̃ = E4 · . . . · E1 �

This example also shows that the diagonal form of a real symmetric matrix achieved
through congruence transformations A → QtAQ is not unique; both diag(1, 1, 1,−24)
and diag(1, 1, 1,−1) are congruent to A. Only the signature (3, 1) is a true congruence
invariant.

In Section IV-2 of the Linear Algebra I Notes we showed that the inverse A−1 of an
invertible matrix can be obtained multiplying on the left by a sequence of elementary
matrices (or equivalently, by executing the corresponding sequence of elementary row
operations). We also developed the Gauss-Seidel Algorithm does this efficiently.

Gauss-Seidel Algorithm. Starting with the n × 2n augmented matrix

[A : In×n], apply row operations to bring the left-hand block into reduced

echelon form, which must equal In×n since A is invertible. Applying the

same moves to the entire n × 2n augmented matrix we arrive at a matrix

[ In×n : A−1] whose right-hand block is the desired inverse.
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An algorithm similar to Gauss-Seidel yields a matrix Q such that QtAQ = D is
diagnonal; the signature (r, s) can then be determined by inspection as in the last steps
of Example 2.11. The reader should justify the method, illustrated below, for computing
an appropriate Q without recording each elementary matrix separately. Starting with
an augmented n × 2n matrix [A : In×n], we apply paired row and column operations to
drive the left-hand block into diagonal form; but we apply them to the entire augmented

matrix. When the left-hand block achieves diagonal form D the right-hand block in
[D : Qt] is a matrix such that QtAQ = D. The steps are worked out below; we leave
the reader to verify that QtAQ = D.

Details: Starting with Col(2) → Col(2)+Col(1) and then the corresponding operation
on rows, we get

[A : I ] =




1 −1 3 1 0 0
−1 2 1 0 1 0
3 1 1 0 0 1


 paired R/C opns.

−−−−−−−−−−−−−−−→




1 0 3 1 0 0
0 1 4 1 1 0
3 4 1 0 0 1




paired R/C opns.
−−−−−−−−−−−−−−−→




1 0 0 1 0 0
0 1 4 1 1 0
0 4 −8 −3 0 1




paired R/C opns.
−−−−−−−−−−−−−−−→




1 0 0 1 0 0
0 1 0 1 1 0
0 0 −24 −7 −4 1


 → [ D : Qt]

Therefore,

Qt =




1 0 0
1 1 0
−7 −4 1


 Q =




1 1 −7
0 1 −4
0 0 1




and a diagonalized form QtAQ is

D =




1 0 0
0 1 0
0 0 −24




We now turn to the the next type of bilinear form to be analyzed.

Canonical Forms. Case 2: B symmetric, F = C.

In this case there is just one canonical form.

2.12. Theorem (B symmetric; F = C). If B is a nondegenerate, symmetric bilinear

form over F = C there is a basis X such that [B]X = In×n. In coordinates, for this basis

we have

B(x, y) =

n∑

j=1

xjyj (no conjugate, even though F = C) .

Proof: We know (by our discussion of F = R), we can put B in diagonal form [B]X =
diag(λ1, · · · , λn), with each λi 6= 0 since B is nondegenerate. Now take square roots in
C and let P = diag(1/

√
λ1, · · · , 1/

√
λn) to get P t[B]XP = In×n. �

There is just one matrix automorphism group, modulo conjugations in GL(n, C). Taking
a basis such that [B]X = I, we get the complex orthogonal group in M(n, C),

O(n, C) = GB,X = {A ∈ M(n, C) : det(A) 6= 0 and AtA = I}
(Note our use of the transpose At here, not the adjoint A∗ = At, even though F = C. As
a subgroup we have the special orthogonal group over C,

SO(n, C) = O(n, C) ∩ SL(n, C)
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These are closed unbounded subsets in and M(n, C).

2.13. Exercise.

1. Show that SO(2, C) is abelian and isomorphic to the direct product group S1 × R

where S1 = {z ∈ C : |z| = 1} and the product operation is

(z, x) · (z′x′) = (zz′, x + x′)

2. Show that A ∈ SO(2, C) if and only if

A =

(
a b
−b a

)

with a, b ∈ C and a2 + b2 = 1.

3. Show that SO(2, C) is an unbounded subset in M(2, C), and hence that SO(n, C)
is unbounded in M(n, C) because we may embed SO(2, C) in SO(n, C) via

A ∈ SO(2, C) 7→




A 0 · 0
0 1 0
...

. . .

0 0 · · · 1




if n ≥ 2.

Hints: For (1.) you must produce an explicit bijection Φ : S1 × R → SO(2, C) such that
Φ(q1, q2) = Φ(q1) · Φ(q2) (matrix product of elements in M(2, C)). In (2.), if we write
A = [a, b; c, d] the identities AtA = I = AAt plus det(A) = 1 yield 9 equations in the
complex unknowns a, b, c, d, which reduce to 7 when duplicate are deleted. But there is
a lot of redundancy in the remaining system, and it can actually be solved by algebraic
elimination despite its nonlinearity . In (3.) use the sup-norm ‖A‖ = maxi,j{|Aij |} to
discuss bounded sets in matrix space. � �

Note: A similar problem was posed in the Linear Algebra I Notes regarding the group
of real matrices SO(3) ⊆ M(3, R) – see Notes Section VI-5, especially Euler’s Theo-
rem VI-5.6. The analog for SO(3) of the problem posed above for SO(2, C) i:wq is
crucial in understanding the geometric meaning of the corresponding linear operators
LA : R3 → R3. By Euler’s Theorem SO(3) gets identified as the group of all rotations

Rℓ,θ : R3 → R3, by any angle θ about any oriented axis ℓ through the origin. �

2.14. Exercise. Is SO(n, C) a closed subset in M(n, C) ≃ Cn2

? Prove or disprove.
Which scalar matrices λI lie in SO(n, C) or O(n, C)?

Canonical Forms. Case 3: B Antisymmetric; F = R or C.
In the antisymmetric case, the same argument applies whether F = R or C. Note that
B(v, v) = 0 for all v, and if W ⊆ V the B-annihilator W⊥,B = {v : B(v, W ) = 0} need
not be complementary to W . We might even have W⊥,B ⊇ W , although the identity
dim(W ) + dim(W⊥,B) = dim(V ) remains valid.

2.15. Theorem (B antisymmetric; F = R or C). If B is a nondegenerate antisym-

metric form over F = R or C, there is a basis X such that

[B]X = J =

(
0 Im×m

−Im×m 0

)

In particular dimF(V ) must be even if V carries a nondegenerate skew-symmetric bilinear

form.
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Proof: Recall that dim(W ) + dim (W⊥,B) = dim(V ) for any nondegenerate bilinear
form B on V . Fix v1 6= 0. Then M1 = (Fv1)

⊥,B has dimension n − 1 if dim(V ) = n,
but it includes Fv1 ⊆ (Fv1)

⊥,B. Now take any v2 /∈ M1 (so v2 6= 0) and scale it
to get B(v1, v2) = −1 . Let M2 = (Fv2)

⊥,B; again we have dim(M2) = n − 1 =
dim(M1). But M2 6= M1 since v2 ∈ M2 and v2 /∈ M1, so dim(M1 ∩ M2) = n − 2. The
space M = M1 ∩ M2 is B-orthogonal to F-span{v1, v2} by definition of these vectors.
Furthermore, B|M is antisymmetric and nondegenerate. [ In fact, we already know that
B(w, w1) = B(w, v2) = 0 and V = Fv1 ⊕ Fv2 ⊕ M , so if B(w, M) = 0 for some w ∈ M ,
then B(w, V ) = B(w, Rv1 + Rv2 + M) = 0 and w = 0 by nondegeneracy.] Furthermore,
if N = F-span{v1, v2} we have V = N ⊕ M . (Why?)

We can now argue by induction on n = dim(V ): dim(M) must be even and there is
a basis X0 = {v3, · · · , vn} in M such that

[ B|M ]X0
=




R 0
. . .

0 R




with

R =

(
0 1
−1 0

)

Hence, X = {v1, v2} ∪ X0 is a basis for V such that

[B]X =

(
R 0

0 [B|M ]
X0

)
=




R 0

R
. . .

0 R




A single permutation of basis vectors (corresponding to some permutation matrix E such
that Et = E−1) gives the standard form

Et[B]XE = [B]Y =

(
0 Im×m

−Im×m 0

)

where m = 1
2

dim(V ). �

A skew-symmetric nondegenerate form B is called a symplectic structure on V . The
dimension dimF(V ) must be even, and as we saw earlier there is just one such nondegen-
erate structure up to congruence of the representative matrix.

2.16. Definition. The automorphism group Aut(B) of a nondegenerate skew-symmetric

form on V is called a symplectic group. If X is a basis that puts B into standard form,

we have

B(x, y) = [x]tX[B]X[y]X = [x]tXJ [y]X where J =

(
0 Im×m

−Im×m 0

)
.

By (38), elements of Aut(B) are determined by the condition

A is in GX,B ⇔ AtJA = J .

on V ≃ R
2m. The corresponding matrix group

Sp(n, F) = GB,X = {A ∈ M(n, F) : AtJA = J}

is the classical symplectic group of degree m = 1
2

dim(V ).
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The related matrix

J ′ =




R 0
. . .

0 R


 with R =

(
0 1
−1 0

)

is a GL-conjugate of J , with J ′ = CJC−1 for some C ∈ GL(2m, R), and the algebraic

condition

AtJ ′A = J ′

determines a subgroup G′ ⊆ GL(n, F) that is conjugate (hence isomorphic to) the matrix

group GB,X = Sp(n, F).

Both versions of the commutation relations determining matrix versions of Aut(B) are
used in the literature.

Note: det(A) 6= 0 automatically because det(J) = (−1)m 6= 0. In fact, A ∈ Sp(n, F)
implies det(J) = det(AtJA) ⇒ (det(A))2 = 1, so det(A) = ±1 whether the underlying
field F is R or C. �

The only scalar matrices λI in Sp(n, F) are those such that λ2 = 1. The fact that
det(J) = (−1)m follows because m row transpositions send J → I2m×2m.

IX-3. Sesquilinear Forms (F = C).
Finally we take up sesquilinear forms B : V ×V → C (over complex vector spaces), which
are linear functions of the first entry in B(v, w), but conjugate-linear in the second, so
that B(x, λy) = λB(x, y), B(λx, y) = λB(x, y). There are only a limited number of
possibilities.

3.1. Lemma. A sesquilinear form on V cannot be symmetric or antisymmetric unless

it is zero.

Proof: We know that λB(x, y) = B(λx, y), and if B is (anti-)symmetric this would be
equal to ±B(x, λy) = ±λB(x, y) for all λ ∈ C, x, y ∈ V . This is impossible if B(x, y) 6= 0.
�

Thus the only natural symmetry properties for sesquilinear forms over C are

1. Hermitian symmetry: B(x, y) = B(y, x)

2. Skew-hermitian symmetry: B(x, y) = −B(y, x).

However, if B is Hermitian then iB (where i =
√
−1) is skew-Hermitian and vice-versa,

so once we analyze Hermitian sesquilinear forms there is nothing new to say about skew-
Hermitian forms.

The sesquilinear forms on V are a vector space over C. Every such form is uniquely
a sum B = BH + BS of a Hermitian and skew-Hermitian form

B(v, w) =
B(v, w) + B(w, v)

2
+

B(v, w) − B(w, v)

2
for all v, w ∈ V

As usual, a sesquilinear form B is determined by its matrix representation relative to a
basis X = {e1, . . . , en} in V , given by

[B]X = [Bij ] where Bij = B(ei, ej) .

Given any basis X, the form B is

1. Nondegenerate if and only if [B]X is nonsingular (nonzero determinant).
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2. Hermitian symmetric if and only if [B]X is self-adjoint (= [B]∗X).

3. The correspondence B 7→ [B]X is a C-linear isomorphism between the vector space
of sesquilinear forms on V and matrix space M(n, C).

The change of basis formula is a bit different from that for bilinear forms. If Y = {fj}
is another basis, related to X = {ei} via

fi =

n∑

j=1

sjiej where S = [id]X,Y .

we then have

([B]Y)ij = B(fi, fj) = B(
∑

k

skiek ,
∑

ℓ

sℓjeℓ)

=
∑

k,l

ski sℓj ([B]X)kℓ

= (St[B]XS)ij where S is the complex conjugate matrix: Sij = sij

Letting P = S, we may rewrite the result of this calculation as

(45) [B]Y = P ∗[B]XP

where det(P ) 6= 0, P ∗ = (P )t. In terms of the transition matrix S between bases, we
have P = S = [id]XY.

Note that P ∗ need not to be equal to P−1, so P need not be a unitary matrix in
M(n, C). Formula (45) differs from that for orthogonal matrices in that P t has been
replaced by P ∗.

3.2. Exercise. If B is sesquilinear, X is a basis in V , and x =
∑

i xiei, y =
∑

j yjej in
V , show that

B(x, y) = [x]tX[B]X[y]−X , so that B(x, y) =
∑

ij

xiBijyj . �

3.3. Definition. A non degenerate sesquilinear form is an inner product if

1. Hermitian: B(x, y) = B(y, x);

2. Positive Definite: B(x, x) ≥ 0, ∀x

3. Nondegenerate:: B(x, V ) = (0) ⇔ x = 0.

Conditions 2. + 3. amount to saying B(x, x) ≥ 0 and B(x, x) = 0 ⇒ x = 0 – i.e. the
form strictly positive definite. This equivalence follows from the polarization identity for
Hermitian sesquilinear forms.

3.4. Lemma (Polartization Identity). If B is a Hermitian sesquilinear form then

B(v, w) =
1

4
[

3∑

k=0

ikB(v + ikw, v + ikw)], where i =
√
−1

Proof: Trivial expansion of the sum. �

If B is a nondegenerate Hermitian sesquilinear form and v 6= 0 there must be some
w ∈ V such that B(v, w) 6= 0, but by the polarization identity nondegeneracy of B
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implies that there is some v 6= 0 such that B(v, v) 6= 0 (and if B is positive definite it
must be strictly positive definite). If v1 is such a vector and M1 = Rv1, we obviously
have M1 ∩M⊥

1 = (0) because w ∈ M1 ∩M⊥
1 ⇒ w = cv1 and also 0 = (w, v1) = c(v1, v1),

which implies c = 0. The restricted form B|M⊥

1

is again Hermitian symmetric; it is also

nondegenerate because if B(w, M⊥
1 ) = 0 for some nonzero w ∈ M⊥

1 , then B(w, V ) = (0)
too, contrary to nondegeneracy of B on V . So, by an induction argument there is a basis
X = {e1 = v1, e2, · · · , en} in V such that

[B]X =




µ1 0
. . .

0 µn




where µk ∈ C and µk 6= 0 (B being non degenerate).
Since B(ei, ej) = B(ej , ei) we get µk = µk, so all entries are real and nonzero. Taking

P = diag(1/
√
|µ1|, · · · , 1/

√
|µn| ), we see that

P ∗[B]XP =




±1 0
. . .

0 ±1




= [B]Y for some new basis Y; recall the change of basis formula.) Finally apply a
permutation matrix (relabel basis vectors) to get

(46) [B]Y = E∗P ∗[B]XPE =

(
P 0
0 Q

)

where P = Ip×p, Q = −Iq×q, and p + q = n = dimC(V ). We have proved

3.5. Proposition. Every nondegenerate Hermitian sesquilinear form B can be put into

the canonical form (46) by a suitable choice of basis in V . If x =
∑

i xiei, y =
∑

j yjej

with respect to a basis such that [B]X has canonical form, we get

B(x, y) =

p∑

i=1

xiyi −
n∑

i=p+1

xiyi

In particular, if p = n and q = 0 we obtain the standard inner product (x, y) =
∑n

j=1 xjyj

in Cn when we identify V with Cn using the basis X such that [B]X has the form (46).
There are just n + 1 X-congruence classes of nondegenerate Hermitian sesquilinear

forms on a complex vector space of dimension n; they are distinguished by their signatures
(p, q). The possible automorphism groups

Aut(B) = {T ∈ HomC(V, V ) : det(T ) 6= 0 and B(T (v), T (w)) = B(v, w) for all v, w}

are best described as matrix groups GB,X with respect to a basis that puts B into
canonical form. This yields the unitary groups of type (p,q). Aut(B) is isomorphic
to the matrix group

(47) U(p, q) = {A ∈ GL(n, C) : A∗JA = J} where J =

(
Ip×p 0

0 Iq×q

)

There is a slight twist in the correspondence between operators T ∈ Aut(B) and
matrices A ∈ U(p, q).
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3.6. Exercise. Let B be nondegenerate Hermitian sesquilinear and let X = {ei}
be a basis such that [B]X is in canonical form. If [T ]X is the matrix associated with

T ∈ Aut(B), verify that the complex conjugate A = ([T ]X)
−

satisfies the identity (47),

and conversely if A ∈ U(p, q) then A = ([T ]X)
−

for some T ∈ Aut(B). �

Thus the correspondence Φ : T 7→ A = ([T ]X)
−

(rather than T 7→ A = [A]X) is a
bijection between Aut(B) and the matrix group U(p, q) ⊆ GL(n, C) such that Φ(T1◦T2) =
Φ(T1) · Φ(T2) (matrix product), and Φ is an group isomorphism between Aut(B) and
U(p, q).

When p = n, we get the classical group U(n) of unitary operators on an inner product
space, and when we identify V ≃ Cn via a basis such that [B]X = In×n, we get the group
of unitary matrices in M(n, C),

U(n) = U(n, 0) = {A ∈ GL(n, C) : A∗A = I} (because A∗IA = A∗A)

As a closed subgroup of U(n) we have the special unitary group

SU(n) = U(n) ∩ SL(n, C) ⊆ U(n) .

There are also special unitary group of type (p, q), the matrix groups

SU(p, q) = U(p, q) ∩ SL(n, C) .

For A ∈ U(p, q) the identity (46) implies

det(A∗) · det

(
Ip×p 0

0 −Iq×q

)
· det(A) = (−1)q

so | det(A)|2 = (−1)q (remember: F = C so this could be negative). In particular,
| det(A)|2 = 1 if A ∈ U(n). We already know that unitary matrices are orthogonally
diagonalizable since they are normal operators (A∗A = AA∗, so A∗A = I ⇔ AA∗ = I).
Since ‖Ax‖2 = ‖x‖2 for all x, all eigenvalues λi have absolute value 1, so the specturm
sp(A) is a subset of the unit circle S1 = {z ∈ C : |z| = 1} for unitary matrices (or
operators). U(n) contains a copy of the unit circle (which is a group under the usual
multiplication of complex number because |zw| = |z| · |w| and |z| = 1 ⇒ |1/z| = 1);
namely (S1, ·) ∼= {λIn×n : |λ| = 1}. In SU(n), however, the only scalar matrices are of
the form λI where λ is an nth root of unity, λ = e2πik/n with 0 ≤ k ≤ n.

Notice the parallel between certain groups over F = R and F = C.

1. SO(p, q) and O(p, q) over R are the “real parts” of SU(p, q) and U(p, q). In fact we
have

O(p, q) = U(p, q) ∩ (M(n, R) + i0) .

when we identity M(n, C) = M(n, R)+
√
−1M(n, R) by splitting a complex matrix

A = [zij ] as [xij ] +
√
−1 [yij ] if zij = xij +

√
−1 yij .

2. We also recognize SO(n) and O(n) as the real parts of the complex natrix groups
SO(n, C) and O(n, C), as well as being the real parts of SU(n) and U(n).

3.7. Exercise. Prove that U(n) is a closed bounded subset when we identify M(n, C) ≈
Cn2

; hence it is a compact matrix group. �

3.8. Exercise. If p 6= n, prove that U(p, q) and SU(p, q) are closed but unbounded
subsets in M(n, C) when q 6= 0. �

74


